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Background

• Nuclear Propulsion
– Nuclear Thermal is far more efficient than chemical engines

• Nuclear power allows for high Isp while maintaining high thrust

• Propulsion system efficiency, mass, and thrust have a large impact upon mission 
logistics and cost

• Traditional Reactor Elements
– Hexagonal rods with straight axial flow passages

• Cermet or graphite based

– Particle Beds attempted

• Much larger surface area 

• thermal instabilities/hot spots
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Grooved Ring Fuel Element

• New fuel element concept
– Stacked grooved disks designed to 

increase surface area and heat 
transfer to propellant

• Leading to higher thrust/weight 
engines

• Propellant flows from outer to inner 
diameter of disks which heat the 
propellant

• Stack of disks makes an element

• Cluster of elements in a reactor

• Carbide materials (e.g. UC, NbC, 
ZrC)

• Mixture has higher melting point than 
traditional fuel forms

– Result: hotter propellant and greater 
thrust/efficiency



5

NEUTRONICS MODELING
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Neutronics Modeling

• Purpose
– Develop a concept reactor layout for a set thrust goal

• Power and distribution

– Analyze impact of material selection upon nuclear reactions

– Study relative material quantities

– Determine uranium enrichment and quantities required

• Relate to theoretical density



7NASA MSFC/Brian Taylor4/21/2017

Reactor Design

Beryllium Hydrogen Fuel

NTR Reactor Configuration Using (U-Zr-Nb)C Fuel
25K Thrust  -- 8 kW/cm3 -- Optimal Fuel to Moderator Ratio = 0.261
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Reactor Design

Beryllium Hydrogen Fuel

NTR Reactor Configuration Using (U-Zr-Ta)C Fuel
25K Thrust  -- 8 kW/cm3  -- Optimal Fuel to Moderator Ratio = 2.95



9NASA MSFC/Brian Taylor4/21/2017

Neutronics Modeling

Uranium Carbide Material Neutron Absorption Cross-Sections

Hafnium

Tantalum

Niobium

Zirconium
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Neutronics Modeling

• Grooves and porosity decrease overall density 

requiring additional UC for reactivity



11NASA MSFC/Brian Taylor4/21/2017

Neutronics Modeling

• Power peaking 
profile of a grooved 
ring fuel element
– Modest power peaking 

seen so far
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THERMAL FLUID MODEL
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Thermal Fluid Model

• Shortened element modeled (2 rings)
– Comsol

• Beryllium structure with zirconium carbide rings
– Properties of mixtures not yet developed for model

• Boundary conditions varied to determine 
appropriate pressure delta to heat the flow for a 
given power/volume of 8 kW/cm3
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Temperature

• 4 psi seems to drive the flow at the right flow rate to heat it to 

near 3000 K for 8 kW/cm3

• Cold spots exist due to cooling from the top cover of the 

rings, but would be reduced in a full stack with mixing and 

additional heated propellant
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Velocity

• Velocity of H2 through the element is fairly slow along the outer 
radius and through the grooves but inceases in the central 
cavity while mixing but remaining laminar
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FABRICATION EXPERIMENTS
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Selection of Materials

• Material Selection
– Need high melting temperature and low neutron cross section (except 

uranium)

– NbC and ZrC chosen

• Lower neutron cross section than HC or TC

– Uranium Carbide Surrogate

• Substitute for uranium

– Avoid regulatory hurdles

• Vanadium Carbide chosen

– Similar crystal structure
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Process

• Grind materials to uniform particle size

• Spark Plasma Sintering

– Powder compressed at high pressure in die

– High current passed through die

• Control dwell, rise and cooling times as well as 
temperatures

– Trying to reach high theoretical density

• Porosity reduces reactivity and could lead to 
hydrogen reactions with the uranium

• Goal 

– Achieve a uniform distribution in a solid 
solution, ultimately with low porosity

– Best to date: 98% theoretical density

• Grooves

– Test grooves cut with saw

– Looking for best way to cut grooves

• Attempting to try to use a water jet
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DCS Variables Chart

Screening Runs of “As Received” [V0.120Zr0.587Nb0.293]∙C

• Direct Current Sintering Variables and the resulting density of sample

Date
Sintering Temperature 

[*C]

Dwell Time 

[min]

Cooling Rate 

[*C/min]

Pressure 

[Mpa]

Density 

[g/cc]

% Theoretical 

Density

1/27/2017 1500 10 100 50 5.65 80.77%

1/31/2017 1500 10 100 50 5.75 82.20%

2/1/2017 1600 10 100 50 5.86 83.77%

2/2/2017 1600 20 100 50 6.05 86.48%

2/2/2017 1600 20 200 50 6.52 93.20%

2/3/2017 1500 20 50 50 6.46 92.34%

2/13/2017 1600 20 20 50 6.20 88.62%

2/24/2017 1600 20 200 50 6.65 95.06%

3/17/2017 1600 20 200 50 6.60 94.35%

3/20/2017 1700 20 200 50 6.80 97.21%

3/21/2017 1550 30 200 50 6.83 97.64%

3/22/2017 1600 20 200 50 6.87 98.21%

3/27/2017 1600 20 200 60 6.85 97.92%
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% Theoretical Density Plots
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Fabrication Experiments – Results to Date 

• Early samples showed less than 

optimal distribution

• Clumps of elements in different 

regions

Table 1:  X-Ray Spectroscopy Analysis of Figure 16

Material % C O V Zr Nb

Spectrum 1 23.47 66.41 6.71 3.41

Spectrum 2 26.59 1.32 0.24 67.92 3.94

Spectrum 3 25.62 0.92 0.31 68.95 4.20

Spectrum 4 25.48 1.21 0.38 68.81 4.12

Spectrum 5 34.74 1.85 22.79 40.63

Spectrum 6 35.56 1.93 0.25 22.75 39.51

Spectrum 7 31.71 2.62 0.39 26.76 38.52
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Fabrication Experiments – Results to Date 

• Sifting materials has improved distribution

• Micro milling has only recently begun but is expected to improve 

distribution

• Visual inspection seems to show improved distribution, but 

samples have fractured for unknown reasons

Table 2: X-Ray Spectroscopy Analysis of Figure 17

% C T
i

V Z
r

N
b

H
f

T
a

8 18.1 80.8 0 0.31

9 18.24 1.15 78.26 0.36 0.99

10 18.56 0.49 78.29 0.65 1.32

11 18.94 2.1 31.08 29.87 15.91

12 16.06 3.04 25.52 33.76 21.61

13 18.77 0.19 77.83 3.21

14 17.67 0.44 73.07 8.81

15 19.32 1.69 47.06 30.15
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CARBIDE MATERIAL 

CHARACTERIZATION
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Thermal Diffusivity Measurements

• The team is attempting to measure thermal diffusivity to fill in 
gaps in the literature
– Disintegration of the first samples occurred for unknown reasons

• Reasons are unknown, but it should be noted that samples survived much higher 
temperatures in CFEET

• Future measurement attempts are planned
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Hot Hydrogen Environment Testing

• Samples tested in Compact 
Fuel Element Environmental 
Test (CFEET) system at MSFC
– 50 kW induction power supply and 

two-color pyrometers for 
temperature measurements up to 
3000 °C

– Designed to flow hydrogen across 
subscale fuel materials for testing 
at high temperatures for up to ten 
hours.  
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Hot Hydrogen Environment Testing

• CFEET Results

– 1st sample maintained structural 
integrity for 30 minutes at 2000 K

– 2nd set of three samples were run at 
2250 K for 30 minutes

• X-ray diffraction (XRD) analysis appears to 
show the tricarbides moving toward a solid 
solution

• Unidentified peaks need further analysis to 
verify if they are due to the formation of 
free carbon, ZrC2, or other lower melting 
temperature compounds



27NASA MSFC/Brian Taylor4/21/2017

Conclusions

• Results of this work are promising

• Fabrication has come a long way in showing a viable means for 
producing these tricarbide rings
– High densities reached

– Micro milling expected to lead to better distribution

– Appears to be moving toward a solid solution after an extended period in a 
hot hydrogen environment

• Thermal diffusivity measurements are expected from future 
samples

• Tricarbide samples have held up in a hot hydrogen environment
– Future hotter tests are planned

• The use of tricarbide fuels and this geometry have potential and 
warrant further investigation


